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ABSTRACT

The extinction, absorption, and differential scattering cross

sections of particles are, in general, functions of the polarization

state of the incident radiation; however, this dependency cannot be

predicted by van de Hulst's anomalous diffraction approximation because

it is a scalar theory. To overcome this deficiency, the Kirchoff and

Kirchoff-Kottler vector diffraction formulations were used to modify

anomalous diffraction in the hope that polarization effects could then

be accounted for. Unfortunately, even with the modification, no

polarization dependence was predicted for any of the cross sections.

In actuality, the differential scattering cross section did show a

second-order polarization dependence, but it was negligible within

the limits of the approximation. In addition to the above work, a

comprehensive, critical literature review of all previous uses of

anomalous diffraction was conducted. In this review, the apparent

differences between the Cross and Latimer (1970) and Stephens (1984)

anomalous diffraction solutions for the extinction and absorption

efficiencies of an infinite cylinder were reconciled. /
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INTRODUCTION

Exact solutions exist for determining the extinction and absorption

of electromagnetic radiation by a few regular, homogeneous particles.

Perhaps the best known of these are the Mie equations for spheres.

While these solutions are valid regardless of the wavelength of the

incident radiation, the particle's size, or its refractive index, they

are frequently cumbersome; furthermore, we encounter few particles in

nature which are regular and homogeneous. Consequently, we strive to

find simpler limiting forms of these solutions. One limiting form which

is useful for a wide range of particles of practical interest is the

scalar anomalous diffraction approximation of van de Hulst (1957, Ch.

11). Although derived originally for spheres, it is readily applicable

to many other shapes, and because of its simplicity, it can be applied

to a system of particles without greatly complicating the resulting

expressions.

Van de Hulst proposed the term "anomalous diffraction" to describe

any theory based on the assumptions that (i) the particle is much larger

than the wavelength of the incident light, and (ii) the complex relative

refractive index of the particle is very nearly equal to one. The first

assumption implies that we are in the geometric optics regime. The

second assumption implies that rays are transmitted through a particle

with little or no deviation and that essentially no energy is reflected.

In addition to the transmitted field, there is diffraction of the

field by the particle according to Huygen's principle; this diffracted

field can be adequately described in the Fraunhofer limit. It is the

interference of the transmitted and diffracted radiation that is the

foundation for the anomalous diffraction approach.
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One question may quickly come to mind: How many particles of

practical interest have relative refractive indices near one? The

answer is "very few"; however, interestingly enough, the approximation

provides the salient features of extinction for relative refractive

indices as high as two. At visible wavelengths, the refractive indices

of water droplets, ice crystals, and numerous biological particles lie

between one and two; all of these particles are studied extensively.

Consequently, I shall use the term light (by which I mean visible light)

when referring to electromagnetic radiation unless otherwise specified.

Although the theory is not restricted as such, I do this because visible

light is the most commonly encountered form of radiation in studies

utilizing anomalous diffraction techniques.

The purpose of this thesis is to first present a comprehensive,

critical review of the literature on anomalous diffraction. Next, an

attempt is made to extend the scalar approximation to include

polarization effects. To do so, both the Kirchoff and the Kirchoff-

Kottler vector formulations of Huygen's principle are used to modify the

original relation. The new vector anomalous diffraction relation is

then used to calculate the extinction efficiency and differential

scattering cross section of a right circular cylinder to see if the

method correctly predicts these functions' polarization dependence.

.P

-f
d,



Chapter 1

REVIEW

1.1 Overview

The anomalous diffraction approximation was first introduced by van

de Hulst in his 1946 thesis; however, it did not come into widespread

use until the publication of his now classic 1957 book. Being basically

a combination of geometric optics and Fraunhofer diffraction, the

approximation allows for the simple calculation of the extinction,

absorption, and differential scattering cross sections for certain

particles or groups of particles.

Van de Hulst coined the term "anomalous diffraction" to describe

any theory based on the assumptions

x > 1 (1)

and

Im-i <<1 (2)

where x - 2ra/X is the size parameter, a is some characteristic

dimension of the particle, X is the wavelength in the medium, and m

is the complex relative refractive index of the particle. The first

assumption means that we are in the geometric optics regime; in other

words, we can use ray tracing to represent light traversing the

particle. The second assumption means that a ray is negligibly

deviated as it crosses the particle's boundaries; in addition, because

the Fresnel reflection coefficients vanish as m -* i, little energy

is reflected. Since m is complex, we can write it m = n-in'. The
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assumption Im-1<<1 then means (n-I) << 1 and n' << 1. Together, the

assumptions imply that the scattered light will be confined to a

narrow region about the forward (incident) direction.

It seems worthwhile here to make a point about the imaginary

part of the relative refractive index. The assumption n' << I will

almost always be met by dielectrics at visible wavelengths (n' < i0
-4

typically except in the region of an absorption band). However, a

problem often arises with researchers' interpretations of n'. The

value of n' - 6 x 10- 3 certainly meets the criterion n' << 1, yet many

scientists will say that this value of n' implies weak absorption. A

simple calculation will show that the absorption is far from weak.

For bulk matter, the Beer-Lambert Law says that the absorption of

light is given by

I = I exp(-aL) (3)o

where I is the irradiance (energy per unit area and time) at a distance

L inside the medium, I is the incident irradiance, and a is the
0

absorption coefficient. The irradiance is also referred to as the

intensity in some light scattering texts (Bohren and Huffman (1983) and

van de Hulst (1957) for example). The absorption coefficient is related

to n' by

4rn'
a - L (4)

The inverse of a gives an e-folding distance, i.e., the distance the

lh t-1light travels before being attenuated by e .Stephens (1984) cites the

a.

a'|

'S

- r-.
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absorption implied by the value n' = 6 x 10- 3 as being weak.

Substitution into (4) using red light (X - 0.7 um) gives an e-folding

distance of 10 um, thus I mm of this substance would decrease the
100!

incident radiation by a factor of e I doubt anyone would call this

weakly absorbing. Consequently, I have several recommendations. First,

I strongly suggest caution be exercised when using relative terms like

weak or strong in reference to absorption; Stephens is far from being

the only culprit. Second, I urge the use of physically real values of

refractive indices. It may be simpler to conjure up some value that

satisfies some desired specification, but it is much more enlightening

if it corresponds to some real material. Lastly, it is necessary to

*" explicitly state the wavelength when referring to absorption since the

absorption coefficient depends explicitly on X as well as n'. With the

preceding points in mind, I will continue with the overview.

The anomalous diffraction approximation would probably be of only

academic interest if it were not for the following fact: van de Hulst

noticed that for spheres, the extinction efficiency's (Q ext) dependence

on the parameter 2x(m-1) was nearly identical to that of the exact

theory even for n as high as two. The absolute value of Qext predicted

by the approximation was somewhat different from that of the exact

theory, however.

The approximation's greatest advantage is its simplicity; another

is that Qext approaches its correct asymptotic value of two as x . c for

many particle shapes. Lastly, it is valid for a wide range of particle

sizes; this fact makes it more appealing than the Rayleigh-Gans-Debye

%. . . . . . . .
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(RGD) approximation which is based on the assumptions Im-II<<l and

2xlm-ll<<l. For spheres with real m, Moore et al. (1967) determined

that the anomalous diffraction approximation was valid for x > 5;

however, for complex m, it proved valid even for x a 0.1.

The major disadvantage of anomalous diffraction is that is was

developed from scalar postulates; therefore, polarization effects cannot

be treated. Another disadvantage is that the magnitude of Qext

predicted by the theory is smaller than that predicted by the exact

theories as mentioned previously; however, Deirmendjian (1960) developed

empirical corrections valid to within t4% for spheres. Lastly, the

ripple structure given by the exact theories is not evident. This

structure arises from such phenomena as surface waves and multipole

resonances, so it is clear why the simple theory does not predict them.

This drawback is not very significant for two reasons: first, for

collections of particles, the ripple structure is smoothed out; second,

for many applications, the ripple structure is simply a complicating

nuisance.

In reference to the assumption x >> 1, there is no apparent upper

limit; in contrast, there must be some lower limit. Van de Hulst (1957)

concluded using Huygen's principle that ". . . a pencil (of light) of

width of the order pX can lead on independent existence over a length

p 2X." Bryant and Latimer (1969) interpreted van de Hulst's conclusion

as follows: if a pencil of light is to traverse a thickness t of a

particle, and if t - p2X, then the beam diameter must be at least pA;

for a square area element AA of edge length d, this gives d > (At) as

the condition for applicability.

. J: Y ' : .7 ?.o .* '".,i .. 
. ,

,- ''''. ''. ,,... . . ."
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Van de Hulst (1957, Ch. 11) originally derived his theory for

spheres. In the next section, I will derive the expressions for the

extinction and absorption efficiencies and the differential scattering

cross section of a homogeneous particle of arbitrary shape.

1.2 Application of Anomalous Diffraction to an Arbitrary Particle

Consider Figure I where the light is assumed to be incident from

the -z direction. If t is the distance a ray travels through the

particle, and if the surrounding medium is assumed to have m - 1, then

the phase difference at P between a ray which traverses the particle and

one which does not is

S( ,r) = kt(E,n)(m-1) (5)

where k = 2w/A is the wave number, and E and n are rectangular

coordinates in the plane V. If Im-11<<l, the field is now known in all

of the plane V which is near the particle. If the field is assumed to

be unity outside of the geometric shadow region, then it is e inside

the shadow region. Thus, the field added to the original field is

(e-0 1).

From the optical theorem, the extinction cross section is given by

C 41T Re{S(O)} (6)
ext k7

where S(O) denotes the complex scattering amplitude in the forward

direction, and Re means the real part. For an opaque body much larger

than the wavelength, we find from Fraunhofer diffraction that

S(O) - G (7)

. . -- ~ . . . . . . . . --- - -.-. A A~A A~A27r*
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where G - fAd~dn is the area projected by the body onto a plane

perpendicular to the incident direction. If we generalize (7) to

include rays transmitted through the body, we get

k2 i-iS

S(0) W k fG(e - )d~dn (8)

The first term under the integral describes the diffracted field; the

second term describes the transmitted field. The extinction then, is a

maximum when the two fields interfere destructively. Substitution of

(8) into (6) gives the extinction cross section.

The absorption cross section can also be calculated. If we recall

-iS -ktn'
that m - n-in', the expression e contains a term e describing

the amplitude decay. The intensity decay is Just the square of this,
-2ktn'
e ; therefore, the fraction of the incident intensity absorbed by

-2ktn'
the particle is (1-e ). If we note that ktn' - Refio}, the

absorption cross section can be written

C f(1-e-2Re{i(}) ddn(9)
abs G(9)

Next, we can calculate the extinction and absorption efficiencies;

they are respectively

C

Q ext - 2 Reff (1-e -( )d~dn} (10)
G G G

and

a abs I C2Refi
Qabs G (1-e )d~dT, (11)
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Equations (10) and (11) are related to each other by

Qext - Qabs + Qsca (12)

where Qsca is the scattering efficiency; if m is real, Qabs w 0, and

thus Qext = Qsca" If n' > 0, the asymptotic limit of Qext as x + isext sc2Gainexte

two. From (10), it is apparent that as Q 2, Ce 2; in other
ext ext

words, an infinite, absorbing body removes twice as much energy from a

beam as is geometrically incident on it. The two contributions of G to

C come one each from absorption and diffraction (scattering near the
ext

forward direction). For many shapes, such as spheres, cylinders, cubes,

and discs, (10) and (11) can be solved analytically; for arbitrary

particles, they must be numerically integrated.

Bryant and Latimer (1969) treated the arbitrary particle in a

manner slightly different from that just outlined. In (5), (( ,n) may

be a complicated function, especially for an irregularly shaped

particle. Instead of the spatially varying O(E,n), Bryant and Latimer

suggested using an average phase shift defined by

- kt (m-I) (13)
av

where t (volume/projected area) is the average particle thickness.
av

This approach provides a useful first guess as to how the particle will

interact with the incident beam; however, a good deal of valuable

information could be lost in such a crude averaging process. Also, the

evaluation of t may be difficult since it will be a function of the
av

particle's orientation in the beam. As a simple test, I compared the

values of Q obtained from both van de Hulst's and Bryant and
5, ext

K. AL I
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Latimer's methods for the case of a nonabsorbing iphere. Bryant and

Latimer's method gave Qext values within about ±6-10% of those obtained

from van de Hulst's method. I suspect the disagreement may be stronger

for a more complex particle. In light of the foregoing statements, I

recommend 0 be used cautiously.

Once the extinction and absorption efficiencies of a single

'Ci particle are known, attenuation by a collection of the particles can be

calculated. We can use (3), but in order to distinguish between the

single particle case and present case, I replace a with T to get

I - I ° exp (-TL) (14)

where L is now the distance into the (poly) dispersion. We can find T

-from

f fdu fdy fda G(u,y,$) Qi(u,y,S) n(u) g(y) h(B) (15)

where u is some parameter specifying particle size, y and S are angles

* specifying particle orientation, n(u) is some size distribution function

per unit volume, and g(y) and h(8) are some angular distribution

functions. If we let Qi be Q ext' Q or Q then T becomes the
ex abs' orQ , hn ecms h

extinction, absorption or scattering coefficient. Instead of the
t.

extinction coefficient, we may call T the turbidity. In the literature,

I find that usually only one or two of the integrations in (15) are

performed; for example, the integrations over all orientations may be

evaluated for a system of randomly oriented particles of uniform size.

Implicit in the use of (14) and (15) is the assumption that multiple

scattering can be ignored. It is for a collection of particles that

%'
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anomalous diffraction is perhaps most useful; for regular particle

shapes such as spheres and cylinders (15), does not become overly

cumbersome to use. In fact, for some particle systems, T can be found

analytically.

Van de Hulst (1957, p. 184) noted that the scattering amplitude

function for small angles near the forward direction could be computed

for spheres by adding a simple factor to S(O). For an arbitrary

particle which lacks the sphere's symmetry, a similar but slightly more

complicated factor must be added.

Again, let the incident light be from the -z direction; also, let

the origin lie somewhere within the particle. Furthermore, assume E and

n are rectangular coordinates in the shadow plane and let the light be

scattered at some arbitrary azimuthal angle 0 (measured from the +E

axis) and some polar angle e (measured from the +z axis). We will

require e to be small enough so that sin e a 6. Then, following van de

Hulst's method for a sphere we find

. 2

-0~ -ik6( coso + nsino)
S(6,0) - (l+cose)fG(l-e )e d~dn (16)

for an arbitrary particle. The expression (16) agrees with that given

by Meeten (1982b). Van de Hulst let the factor (1+cose) = 2 since e is

small. Once S(6,0) is known, we can calculate the differential

scattering cross section from

dC
sca I IS(6,0) 2 (17)

k

eq~
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where df is an element of solid angle. It is important to realize that

dC /d5 is not a derivative; rather it is written this way to remind ussca

that it is the differential scattering cross section (Bohren and Huffman

1983, p. 72).

1.3 Literature Review

In the sections which follow, I will provide a comprehensive,

critical review of all previous uses of anomalous diffraction. At the

end of the chapter, I will provide reference tables listing Qext and

Qabs' when available, for each shape I have discussed. Several factors

should be kept in mind while reading the literature review. First, the

papers were reviewed on the basis of their use of anomalous diffraction;

to consider all other factors would prove too lengthy for this thesis.

Second, #:he notation given is that consistent with previous sections; in

other words, I translated each author's notation into that of this

thesis. Finally, the divisions I have created are not perfect; some

papers may apply to several subsections. The categorization scheme I

have chosen is the one which I considered to give the best mixture of

fluidity and consistency.

1.3.1 Spheres

The homogeneous sphere is the simplest particle shape to use in

light scattering studies. It has no shape anisotropy; therefore, the

extinction, absorption, and scattering efficiencies are polarization

independent. I have found, probably because of its simplicity, that the

sphere receives the most attention in the literature; this fact will

become quite apparent if one notices that about 75% of this review is

devoted to spheres.

Wr %W~% .L . *****- d -. ,C .- -- %;%%F-~~~~~ ~ ~ ~ ~ I*. I*\Vx: -; :0 : - - - - .- 1 - - -% '- .C
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1.3.1.1 Single Spheres

As mentioned earlier, van de Hulst first derived the anomalous

diffraction approximation in his 1946 thesis, although he had not named

it at that time. The approximation is often referred to by other names

such as (i) the ray approximation, (ii) the van de Hulst approximation,

and (iii) the soft particle approximation; the first and third could be

confused with other approximations and should be avoided. The 1946

thesis is translated only fairly into English and is mostly of

historical interest as the basis for van de Hulsr's 1957 book. This

1957 text is a must for the newcomer to anomalous diffraction or light

scattering in general. Included with van de Hulst's development of the

approach for spheres (Ch. 11) are various limiting expressions for small

and large phase shifts as well as expressions valid in the region of an

absorption band. Table 1 gives van de Hulst's expressions for Qext and

Qabs for spheres and many other equivalent expressions.

Anomalous diffraction, as derived by van de Hulst (1957, Ch. Ii),

had its limitations. First, it underpredicted the magnitude of the

exact value of Q ext Second, van de Hulst derived the theory only for

spheres and normally incident, nonabsorbing cylinders. Third, effects

of optical anisotropy were not considered; and lastly, polarization

effects could not be predicted. In the remainder of this thesis, the

attempts of various researchers to overcome these limitations are

presented.

Many calculations have been performed comparing the exact values of

Qext with the predictions of the anomalous diffraction approximation.
ex

p

- .:.I<.x...
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Penndorf (1956, 1959) made extensive calculations for real m and found

van de Hulst's method useful for I s n <1.5. In 1956, Penndorf provided

AD
these simple correction factors for Qext:

0 t _ (I + n-I 4.08- AD
ext n *i 1 Qext 4.08 <

(18)

Qext [ +Qt 5(n-) < < 4.08

~AD
Where Qe is the corrected value, and QexD is the value from anomalous

ext ext

diffraction. These corrections bring the results within 2% of exact

values for I s n 5 1.5. A similar correction was offered by Klett

(1984),

1.[ + (n -1.2) AD

'xt - 1 3 ext (19)

with similar results for I : n S 1.5. Deirmendijian (1960, 1969)

extended Penndorf's corrections to include complex m for various ranges

of *. His factors give Qe within ±4% of exact values. Deirmendjian
ext

(1960) also applied his correction factors to Q Aso but he did not
abs

specify the accuracy in this case; he did mention that the results may

be up to 15% off in the region of an absorption band. In a continuance

of his fine work, Deirmendjian et al. (1961) provided a minor section

that graphically compared anomalous diffraction and Mie calculations of

'p
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Q ext for complex m. In his 1969 book (pp. 28-37), Deirmendjian expanded

upon the results of the 1961 paper by including also a comparison of the

values of Q' obtained using his correction factors. Again, the
ext

comparison was for complex m, but unlike before, the results were

presented in tabular form. Another paper in which a correction factor

AD
was offered for Q was that of Smart and Vand (1964); their

ext

complicated expression gives Qe values within 2% of exact values for
ext

the range I n 2.06. Smart and Vand's methods were difficult to

follow. For example, they introduced the transmission coefficient at
AD

normal incidence into van de Hulst's expression for Qext' although they

did not identify it as such. Their logic for adding the factor was

vague; in fact, I would think the factor s) -ld be added twice if at

all: once to include rays entering the sphere .,nd once to include rays

exiting it. Regardless, Smart and Vand used their correction to isolate

the ripple structure associated with the exact theory by taking Qext -

IQextl. This application, at least, was a novel use for anomalous

diffraction. Kerker (1969) gave a fine review of anomalous diffraction

for spheres (pp. 104-127), cylinders (pp. 291-293), cubes (p. 127), and

spherical polydispersions (pp. 454-457). He provided both

Deirmendjian's (p. 126) and Smart and Vand's (pp. 113-114) correction

factors; however, he failed to identifv a variable in his section on
AD

Smart and Vand. In Kerker's equation 4.2.12, Q (1) is simply QeAD forV.sca ext

n' - 0. Also note that the third term in Kerker's equation 4.2.27 is

-1 ADmissing a factor of P ; this equation gives Q ext for absorbing spheres

see Table 1). If we continue the review of those papers comparing

anomalous diffraction predictions with those of Mie theory,

.
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we find a nice, concise paper by Moore et al. (1968). They provided
AD /Mie AD M ie

excellent graphs of QexD /Q e versus x and QAD /Q as versus x. A
ext ext abs abs

similar treatment was performed using the RGD approximation. From

their comparisons, Moore et al. determined that for n' = 0, anomalous

diffraction was valid for x > 5; however, for n' # 0, it remained valid

even for x v 0.1. Also in 1968, Farone and Robinson, in an often-cited

paper, mapped the regions of the m-x domain in which anomalous

diffraction was within 15, 50, and 100% of exact Mie results. They

considered the ranges 1 < x < 20 and 1.1 < n < 2.5; furthermore, they

included small angle light scattering as well as 0 ext. Although the

paper has valuable information, its terminology is poor, and the nominal

assumptions listed for the anomalous diffraction approximation are

incorrect. Farone and Robinson gave Im-1I<<1 and xfm-i<<1 as the

assumptions required for van de Hulst's method; these are actually the

assumptions of the RGD approximation. In addition to this mistake, they

made statements such as "Rayleigh-Gans scattering occurs when . . .

Rayleigh-Gans is a theorv which predicts light scattering, not a form of

light scattering. I believe great difficulties may arise when we fail

to separate reality from descriptions of it. The last comparison paper

for spheres is that of Debi and Sharma (1979). Not only did they

compare anomalous diffraction to the Mie theory, they compared it to the

RGD and Eikonal approximations as well. I find this paper very useful

if one wishes to find the best approximation for a given situation.

Debi and Sharma considered only real m with 1.05 : n < 1.30 and 0.2 < x

: 25. Of four m-x domains they identified, anomalous diffraction was

the best approximation in two: x > 1, 0 > 4 and 0.4 < x < 1.2, 0 < 1.

?6 , ,: , '" , -j '- - , '," ,, . , ' '-- -''',."' , -
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The Eikonal approximation was strongly promoted by Debi and Sharma. It

applies to Lhe same m-x domain as anomalous diffraction, and in fact, is

in all ways identical to anomalous diffraction except for the phase

shift. In the Eikonal approximation, the phase shift is given by

A D (e+-) AD (20)

where the subscripts refer to the Eikonal and anomalous diffraction

approximations, respectively. Since Im-1<<l is assumed, the Eikonal

approximation is nearly equal to the anomalous diffraction

approximation; moreover, they become identical as m - 1 for real m.

Van de Hulst's approximation is more heavily used by, and more familiar

to those who study light scattering, so I see no real reason or

advantage in considering the Eikonal approximation. I hope Debi and

Sharma perform a similar study for complex m in the future as the

results may be interesting.

In contrast to the comparison papers, several researchers were

content to use van de Hulst's sphere approximation to gain insight into

more difficult scattering problems. In an excellent, short letter,

Latimer and Bryant (1965) eliminated any possible ambiguity in the

notation van de Hulst used in his original derivation; subsequently,

they developed expressions for the phase shifts in absorption bands of

the Lorentzian or Gaussian type. These phase shifts could then be used

in anomalous diffraction expressions. Plass (1966) went on to
AD AD

systematically explore the dependence of QexD and QAD on m by varying
ext abs

-Rn and n' incrementally. Assuming the exact values of Q etand Q b
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have the same functional dependence, Plass made some interesting

observations. Plass, however, is another person who may have

misinterpreted the meaning of n'; for example, he called n' = 0.01

small absorption. For visible light, this value of n' implies enormous

absorption. Next, in a fine 1969 paper, Bryant and Latimer illustrated

numerical integration techniques for determining Qext in which a sphere

was modeled as a collection of concentric cylinders. Each cylinder's

scattering was described in terms of anomalous diffraction. This method

can readily be applied to a coated sphere over which m does not vary too

greatly. In a more complex departure from van de Hulst's simple

expressions, Meeten (1982b) generalized anomalous diffraction to

describe small angle light scattering by anisotropic spheres. His

results might be of great value as he gave the scattering matrix in

terms of the particle's Jone's matrix; the components of the scattering

matrix are each derived from an anomalous diffraction approach. Thus,

polarization effects can be considered for an anisotropic sphere.

Meeten's approach leaves me with some doubts. Meeten made two important

assumptions, one completely intuitive, that while logical, have no

physical basis. I believe some of his results could be realized by

other means; consequently, this paper warrants further study. Finally,

a recent paper by Klose (1986) appeared to have important results. From

a completely different approach, without the use of the forward

scattering amplitude, Klose derived expressions for Qext identical with

those of anomalous diffraction for a sphere, cylinder, and spheroid.

Furthermore, Klose reported a polarization dependent extinction

efficiency for the spheroid, something not appearing in the anomalous

'S%
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diffraction results. However, I could not understand why no

polarization dependence was found for the cylinder; after all, a highly

prolate spheroid is often used to represent a cylinder. Thus, I wrote

to Klose about this apparent conflict. Upon checking, Klose found an

error in his equation 2.20 for the spheroid; upon correction, the

polarization effects no longer appeared for the spheroid. Although

expected, this result is unfortunate. Klose assured me that he would

publish an errata soon. Klose's paper is difficult to follow, but the

fact that he duplicated van de Hulst's results in a completely

independent manner is interesting. Since Klose's method is far more

complicated than that of van de Hulst, I do not foresee it having any

great practical value.

1.3.1.2 Monodispersions

Although few papers addressed spherical monodispersions and their

associated features, not surprisingly, all of the ones I found were

concerned with colloidal suspensions. Champion et al. (1978) derived

the refractive index increment dn/dc2, where c2 is the concentration of

the dispersed phase, for dilute dispersions using the Rayleigh, RGD, and

anomalous diffraction approaches. In addition to spheres, they also

considered discs which prompts me to state the following opinion:

Champion et al. called "Mie scattering" that for particles of the order

x - 1; however, since Mie developed his relations for spheres, I believe

the term "Mie" should only be used in reference to spheres. Also, as I

mentioned in my review of Farone and Robinson (1968), I dislike terms

such as "Mie scattering" and "Rayleigh-Gans scattering" because neither

is a form of stattering. I realize phrases like this are common in the

- ------,
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literature, but I think my point is valid. I will not address this

issue again. To continue, Champion et al. found that the refractive

AD
index increment, unlike QAD , could be extrapolated correctly from the

ext

anomalous diffraction size region to the Rayleigh region. The Rayleigh

approximation is valid for particles with x << 1 and jmxj<<l. In a

continuance of their work, Champion et al. (1978b) discussed the

refraction of light by a dilute suspension of spheres, they used the

exact Mie theory as well as the Rayleigh, RGD, and anomalous diffraction

approximations. Next, Champion et al. (1979b) compared refraction and

extinction (by which they meant Qext) to find the similarities and

differences. For the comparison, they defined a term P ref' the

refraction efficiency in analogy to Q ext; I found Pref a more difficult

concept to understand physically. Nevertheless, the paper was simple

with potentially important results. Champion et al. found that a

refractometric method would be better for sizing larger particles than a

turbidimetric method. In all cases I have encountered, turbidimetric

methods were used as the sizing technique. Therefore, the Champion et

al. conclusions merit further study.

Meeten (1980a, 1980b) performed a simple, yet clever generalization

of anomalous diffraction to enable the calculation of the linear

birefringence and linear dichroism of a dispersion of colloidal

particles. In Meeten (1980a), the generalization could apply to any

anisotropic particles as long as all of their optic axes were aligned,

but alignment of the optic axes is an unrealistic requirement. Meeten

(1980b) overcame this restriction by allowing for arbitrarily oriented,

anisotropic spheres. Meeten's (1980a) simple approach is worth

e.--,-:
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repeating here. Suppose a particle has mutually orthogonal optic axes

a, b, and c with refractive indices ma, mb, and mc - mb, respectively.

Meeten assumed that upon transmission, the phase lag of light polarized

parallel to the a or b axes could be described by

Pe - ktm1 0'a - 1) (21)

or

o - ktm (1b - 1) (22)
0 1 b

respectively, where De is the phase lag of the extraordinary ray, m I is

the refractive index of the continuous phase, Va = ma/Ml, o is the

phase lag of the ordinary ray, and pb - mb/mi. Meeten then separately

applied (21) and (22) to (8) to give S(0) e and S() Meeten's results

confirmed the empirical Zocher's rule which states that linear dichroism

is a maximum when linear birefrigence is a minimum. Although clever,

these results lack experimental verification. Meeten (1982a) pointed

out the following error in Meeten (1980b): in equations (5) and (30),

the right-hand side must be divided by 47c where e is the permittivityo o

of free space.

Latimer and Wamble (1982) found another good use for anomalous

diffraction. They wanted to qualitatively model the observed

.% modifications in scattered light fluxes due to the aggregation of

colloidal particles. The aggregates are complex in shape, yet some

shape information is lost through the randomness of their orientations.

Anomalous diffraction, with its attention to gross particle parameters,

seemed a useful tool for the study; it was unnecessary to complicate

things with exact theories since no exact theory wholly applied.

A-"-".- -F". -'
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Latimer and Wamble chose the coated sphere as a model for the

aggregation. The refractive index and volume of the coat matched those

of the colloidal particles in the aggregation; the refractive index and

volume of the core matched those of the interparticle spaces in the

aggregation. The paper is good overall with two exceptions: first, the

section on information theory consists of mostly "hand-waving" arguments

and second, the scales of Figures 9 and 10 are different thus giving the

appearance of better quantitative agreement between experiment and

theory than might actually exist.

1.3.1.3 Polydispersions

Polydispersions are the rule rather than the exception in naturally

occurring collections of particles. The variables of interest when

considering polydispersions are T, the turbidity, and Q ext' the

extinction efficiency of the polydispersion. This latter quantity is

simply r divided by the total geometric cross section per unit volume,

G. For spheres, G is given as

- 2
G- / a n(a) da (23)

0

where a is a sphere's radius. By replacing the exact values of Qext

and/or n(a) in (15) and (23) with analytic functions, we can hope to

analytically integrate or at least simplify the expressions for 7 and

Qext" While these analytic expressions may be less realistic

physically, they can allow us to find the characteristic dependencies of

T and Qext on particle size or refractive index for example. Tn this

section, the analytic expressions used to replace the exact value of

I%
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Qext in (15) are those for spheres with real or complex m derived from

the anomalous diffraction approach (see Table 1).

Van de Hulst (1957, p. 194) illustrated the calculation of Q for
ext

three simple, yet unrealistic size distributions. A more physically

acceptable approach was undertaken by Zuev et al. (1965). They

- AD
calculated 0 using Deirmendjian's corrected value of Q as the

ext ext
kernel in the turbidity relation. For a size range 2 < a < 10 um and

with 0.5 < X < 14 um, Zuev et al. tested their calculations by

collecting experimental data from an artificial fog with a y size

distribution. The graphs depicting the experimental versus theoretical

values of Qext were almost impossible to decipher; however, upon close

examination, the values are seen to be in reasonable agreement.

Deirmendjian (1959, 1960) calculated the turbidity at the surface

due to water droplets in the atmosphere using several haze and cloud

models. In the first study, Deirmendjian (1959) ignored absorption by

considering only 0.8 < X < 2.25 um where water shows few strong

absorption bands. In the follow-up study, Deirmendjian (1960) was

forced to consider absorption since he was interested in the region

2.25 < X < 14 um. Water shows several strong absorption bands in this

wavelength range. Although in the first paper Deirmendjlian used exact

ADMie values, in the subsequent one he used his corrected values of Q

in the turbidity relation. Since m is strongly wavelength dependent in

this part of the spectrum, Q' was calculated at many individual
ext

wavelengths. For a further analysis of the extinction by spherical

polydispersions, I recommend Deirmendjian (1969). In a similar study,

Hilbig (1965/66) calculated the turbidity of a Maxwell-distributed

.4J
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AD
collection of nonabsorbing spheres using QexD as the kernel of the

ext

turbidity relation. Since Hilbig's paper was unavailable in English, I

have provided only the information from his abstract. Next, Casperson

(1977), in an outstanding paper, developed relatively simple analytic

AD
expressions for r using Qext with real or complex m in (15). The size

distribution was modeled as being either logarithmic or power-law-

exponential. These size distributions are frequently used to model

clouds, rain, and atmospheric aerosols. Casperson was all-encompassing

in his analysis and quite realistic about his results. He made the

following valuable point which should be considered by all who perform

turbidity calculations using anomalous diffraction: Qex t is small for

small x (i.e., x < 1) when Im-ll<<I, so the extinction will be dominated

by the larger particles; consequently, the fact that anomalous

diffraction is poor for x < 1 will be of little importance.

Lastly, Yamamoto and Tanaka (1969), Box and McKellar (1978a) and

Fymat and Mease (1978) all found anomalous diffraction to be an

excellent tool for gaining insight into the inverse problem of light

scattering. I will elaborate on the inversion problem in another

section (1.3.1.5). Basically, in inversion problems, we use measured

values of T(W) and invert the turbidity relation to find parameters of

the particle system like the size distribution or refractive index. For

their inversions, all three groups used exact Mie theory to calculate

0 in (15). However, each group replaced Q with Q AD to study the
ext ext ext

direct problem. By studying the direct problem, insight may be gained

into the potential pitfalls of the inverse problem. First, Yamamoto and

Tanaka (1969) were concerned with the size distribution of atmospheric

.~ -I ~-a" . a" ~.~.."C-2~; 4% -.
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aerosols. They ignored absorption by citing a study in which the

refractive index of the aerosols was given as m = 1.5 - 0.Oli or

m - 1.5 - 0.li; they declared that n' decreased for a moistened aerosol.

For the region 0.35 : S ! 2.27 Um which they considered, even if n' of a

moistened aerosol decreased by a factor of 10 (especially if n' - 0.1),

I do not think that ignoring absorption was wise here. Regardless,
AD

Yamamoto and Tanaka used Qext in the turbidity relation as a check of
ext

the dependence of T on n. In this way, they could estimate the error

incurred if their assumed value of n = 1.5 was incorrect. Next, Box and

McKellar (1978a), armed with a knowledge of the column-integrated

turbidity's dependence on refractive index, were well prepared to attain

their goal: the determination of atmospheric aerosol columnar loading

from measurements of T(A). Please note that their n(a) is the size

distribution per unit column area unlike mine which is per unit volume;

consequently, their T is dimensionless. Likewise, Fymat and Mease

(1978), armed with a knowledge of the turbidity's dependence on

refractive index, were better prepared to attain their goal: the

retrieval of the complex refractive index of atmospheric aerosols using

narrowband spectral transmission ratios. In closing this section, I

must make two comments on Fymat and Mease's paper. First, their graphs
AD

of QeAD versus a were confusing because their choice of ordinate and
ext

abscissa was the opposite of that normally encountered. Second, for a

portion of their study, Fymat and Mease considered n' 0.1 which may be

in violation of the anomalous diffraction assumption requiring n' <c 1;

the approximation is poor for n' 0.1 and should not be accepted as an

accurate approximation to Mie theory in these cases.

%*%**.4 k.%" .. ~ ~ .-
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1.3.1.4 Biological particles

In the past 25 years, biologists have become more aware of the

value of light scattering as a nondestructive tool for acquiring

information on cell cultures. I am devoting a special section to the

treatment of biological cells because they present a unique problem.

Since a cell is a highly intricate, heterogeneous system, we cannot hope

to exactly predict how a given cell will scatter light; in fact, because

of the complexity, one might think it impossible to predict the

scattering at all. Yet, as we will see in the forthcoming discussion,

fairly accurate light scattering predictions can be made. The success

of these predictions can be attributed to the loss of light scattering

detail inherent in a randomly oriented dispersion of cells. As a

reminder, all researchers in this section have modeled their cells as

being spherical. The light scattering predictions are derived from the

Mie theory, the RGD approximation, and most importantly to this thesis,

the anomalous diffraction approximation.

My recommended starting point for those interested in light

scattering techniques for cells is Latimer (1982). In this excellent

paper, he provided a review of the uses, potential uses, and limitations

of light scattering theory for deriving information from cell samples.

He discussed the Mie theory, the RGD approximation, and the anomalous

diffraction approximation and noted that most cells are of such a size

and composition, that in studies using visible light, the latter two

Sapproximations usually apply. Latimer pointed out that the overall cell

is usually in the large particle domain with an inner structure in the

small particle domain; consequently, extinction and small angle light
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scattering should be used to investigate the gross cell structure while

large angle light scattering should be used to investigate the

microstructure of the interior.

The first paper to appear on this section's subject was that of

Latimer and Rabinowitch (1959). They used van de Hulst's (1957, p. 191)

anomalous diffraction expressions for extinction in the region of an

absorption band to predict the experimentally observed enhanced

scattering on the long wavelength side of an absorption band. The

particle of incerest was Chlorella, and the absorption was due to

chlorophyll pigment. The pigment was modeled as being uniformly

distributed throughout the cell. Although a simple approach, the

observed characteristics of the scattering were predicted. In a

follow-up study, Charney and Brackett (1961) tried an empirical

correction to * in van de Hulst's (1957, p. 175) expression for Qext for

spheres. Their modified 4 had two terms: the first was proportional to

the refractive index of the cell relative to the surrounding medium; the

second was proportional to this same refractive index adjusted by the

strongly wavelength dependent pigment refraction. Charney and Brackett

were well aware of the high degree of approximation inherent in their

approach, yet they achieved excellent agreement between their

theoretical predictions and experimental observations of the light

scattering by Chlorella.

Since absorbers (pigments) are often only a small portion of a

cell, and because of the large intracellular distances, some light

passes through a dispersion virtually undamped. This effect causes

0 distortions in the measurements of absorption spectra when some



F: 30

conventional spectrophotometers are used. Latimer and Eubanks (1962)

termed this effect the "sieve" effect and sought a correction for it.

Their correction was based on a minor modification of van de Hulst's

AD
(1957, p. 181) expression for Qabs" Latimer (1967) further refined the

method. Like Charney and Brackett (1961), even with the many

approximations they used, Latimer and Eubanks obtained absorption

spectra for red blood cells and chloroplasts in good agreement with

previously published spectra.

Latimer et al. (1968) made a theoretical investigation of how

conformational changes in a cell's structure affects light scattering.

They made two basic assumptions. In the first, the cell was assumed to

take up or extrude water with no change in dry weight; in the second,

the cell's interior was assumed to behave like an ideal solution. For

an ideal solution, the refractive index is modeled as being inversely

proportional to the system's volume so that we can write the phase lag

of transmitted light in the shadow plane as

o kt (m -1) V /V (24)
0 0

where m and V are the initial values of refractive index and volume,

AD
respectively. By substituting this 0 into the expression for QeD , the

ext

effect of volume charzes becomes fairly simple to understand physically.

Within the limits of the approximation, shrinkage decreases the cell's

projected area and thus decreases extinction; on the other hand,

shrinkage increases the effective refractive index and thus increases

extinction. Since the two effects compete, it is not obvious beforehand

.5
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whether a given change will increase or decrease extinction; it will

depend on the cell's original size, refractive index, and the wavelength

of the incident beam. Once the nature of the problem was known, more

precise calculations were performed. Bryant et al. (1969b)

experimentally confirmed the predictions of Latimer et al. (1968) using

exact Mie calculations for the theoretical work. Comparison was also

made to the predictions of anomalous diffraction and the RGD

approximation. Only anomalous diffraction was in qualitative agreement

with both the Mie theory predictions and experimental observations.

Bryant et al. (1969a) measured C of E. Coli cells, yeast cells,
ext

and spinach chloroplasts. These measured values of C etwere compared

with calculated CA D  values. The particle parameters such as size,
ext

shape, and refractive index were obtained experimentally and used in the

theoretical calculations. Initially, all cells were modeled as spheres;

subsequently, calculations were made in which the yeast cells and

spinach chloroplasts were modeled as spheroids and in which the E. Coli

cells were modeled as infinite cylinders. For both the spheroid and

cylinder cases, the theoretical predictions were in better agreement

with experimental observations than those of the sphere cases. For

spheroids of axial ratio close to one, the effect of asphericity was

found to be almost negligible. In contrast to the excellent predictions

- the models of E. Coli and yeast cells, an artifically low value of m

had to be used for the spinach chloroplast to get good agreement between

theory and observation; no reason was offered. Bryant et al. contained

a lengthy, albeit poor dissertation on the physical principles

underlying the anomalous diffraction approximation. For example, they

7
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used phrases like "light bounces" and "light bends"; I think these

metaphors are suitable only in elementary texts. Latimer (1983)

resolved an apparent conflict between the results of the previous work,

Bryant et al. (1969a), and those of Bussey (1974). Contrary to Bryant

et al., Bussey found decreased transmission through a collection of

yeast cells upon shrinkage. Bussey's theoretical work was based on an

expression derived from anomalous diffraction in the limit of small

phase shifts; however, his cells were too large for this relation to

apply. Also, the parameter Bussey needed to measure could not be

obtained correctly with the photocell he used. Fortunately for Bussey,

his two errors compensated each other; as a result, his theoretical and

experimental transmission values were incorrectly in good agreement.

Morris and Jennings (1977) used anomalous diffraction to obtain

closed-form, analytic expressions for small angle light scattering by

coated spheres. The success of their method was dependent on the sphere

being either very thickly or very thinly coated. Morris and Jennings

noted that many cells could be modeled by a thinly coated sphere. Their

paper was well done and concise; only their research on previous uses of

anomalous diffraction was lacking. Morris and Jennings claimed little

use had been made of van de Hulst's approximation, a fact easily

disputed by the length of this literature review.

Morel and Bricaud (1981) used a theoretical approach to

reinvestigate the problem of absorption in a discrete medium and the

applicability of the Beer-Lambert Law in such cases. They showed that

the concept of specific absorption, the absorption per unit absorber

concentration, had to be modified for a discrete medium. Morel and
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Bricaud were concerned with algal cells; they modeled them as

homogeneous spheres and applied van de Hulst's (1957, p. 181) expression

AD
for Qabs to them. Although they used anomalous diffraction, they did so

with virtually no discussion of its basic precepts. When using an

approximation, all of the premises should be stated so that the reader

is aware of the applicability of any resulting theory. The choice of

anomalous diffraction was wise here as the whole study was very

approximate. Why bother making exact scattering calculations for a

first guess theory? Morel and Bricaud found three basic regimes. For

small and large phase shifts, the specific absorption was nearly

constant, so the Beer-Lambert Law was valid. Between these regions, the

specific absorption was variable, so the Beer-Lambert Law did not

strictly apply. Morel et al. (1983) continued to make good use of

anomalous diffraction, although I had to check Morel and Bricaud (1981)

to even know they were using it. Bricaud et al. measured absorption and

scattering coefficients of four oceanic phytoplanktons and transformed

the coefficients into specific coefficients and optical efficiencies. A

knowledge of Qabs for phytoplanktons is valuable for determining

photosynthetic yields. For a theoretical investigation, they assumed

the phytoplankton to be homogeneous spheres, then anomalous diffraction

was used to calculate Q and Q the scattering and absorption
sca abs'

efficiencies of the entire systems, for various size distributions and

refractive indices. The graphs of these results are superb. As a final

comment, the notation used in the paper was that proposed by the

International Association for Physical Sciences of the Ocean (TAPSO); I

find this notation terrible. In my opinion, attempts to impose

I-•. " %% " . . ..% % . . . .. % % %".% %
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standardized notations, while laudable, are usually failures, and the

readability of papers and texts suffers as a result. Another paper

following the IAPSO guidelines, and the last of this section, is that of

Bricaud and Morel (1986). Like their previous work, they used anomalous

diffraction with little explanation of the underlying assumptions or

accuracy of the approximation. Again, phytoplankton were modeled as

homogeneous spheres. As inputs to their anomalous diffraction-based

calculations of Qsca and Q abs' they used the experimentally determined

size distribution, measured absorption spectra, and an adjustable real

refractive index n of the form n - I + e where E is some small number.

Even though Bricaud and Morel admitted that their whole approach was

just a first approximation, the agreement between theoretical

predictions and experimental observations was fair; the graphs depicting

this comparison were small, crowded, and hard to read, however.

1.3.1.5 Inversion techniques

All of the sections thus far have dealt with the direct problem of

light scattering; in this section, we turn our attention to the "harder"

indirect problem. Bohren and Huffman (1983, p. 10) provided the

following useful analogy: the direct problem is like trying to predict

what a known dragon's tracks look like; the indirect problem is like

trying to predict what an unknown dragon looks like from an inspection

of its tracks.

1.3.1.5.1 Monodispersions

For a monodisperse system of spheres the turbidity relation reduces

to

2
t= a N Qet(25)

5.'

.o
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where N is the number of particles per unit volume. By experimentally
AD

measuring T and N, and by substituting Qext for the exact value, it

becomes relatively straightforward to invert (25) to get the sphere

radius, a, or refractive index, m, if either is known beforehand.

Please note that absorption is neglected in each of the papers of this

section.

Shchegolev and Klenin (1970) developed a system of equations, one

derived from (25), that allowed for the simultaneous determination of

both a and m. The inputs to the system of equations were T(X) measured

over a narrow wavelength spectrum and (T/N) , the specific turbidityo

extrapolated to infinite dilution. The use of anomalous diffraction was

well hidden in this paper, although I do not know why since the

theoretical predictions matched the experimental observations fairly

well. Next, Shchegolev and Klenin (1971) found that the relation for

the wave exponent, w, given by

InT - (D Q ext (6
w=alnA Q text (26)

AD
could be expressed analytically if QeAD was substituted for the exact

ext

value. The resulting predictions of w agreed well with previously

published literature values. Shchegolev and Klenin illustrated the

usefulness of anomalous diffraction rather nicely here. Finally, Klenin

and Shchegolev (1971) put the theory of their previous two papers to

work in the area of polymer science. They found, within certain

restrictions, that the mass of polymer precipitated during turbidimetric

. .. . . -
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titrations could be calculated from a knowledge of the turbidity

variation which occurred.

The last paper of this section is that of Sharma and Debi (1980).

In this difficult to follow paper, the effects of using anomalous

diffraction, the RGD approximation, or the Eikonal approximation were

compared for the determination of sphere size and weight by inversion

methods. Sharma and Debi investigated the ranges 1 S x : 25

and 1.05 S n < 1.30. For spheres of x > 1 and m < 1.10, anomalous

diffraction was the most useful approximation.

1.3.1.5.2 Polydispersions

The fundamental task of this section is to invert the turbidity

relation for spheres,

T wfra2 Q (Xm) n(a)da (27)
0 ext

so that n(a), the size distribution function, can be found. The

accurate, remote, and nondestructive determination of n(a) is of great

interest to scientists studying atmospheric aerosols, colloidal

suspensions, and cell cultures to name just a few. The method of this

section is to first replace the exact kernel, Q ext, with the approximate
AD ADext" Except where otherwise noted, the kernel Qext applies only to

nonabsorbing spheres. I attribute the minor attention given to

absorbing spheres to the fact that the inversion of (27) is quite

complicated even when ignoring absorption. The next step of the method

is to measure the data function, T, over a wide wavelength spectrum. The

collective data set, T(X), is then usually referred to as the multi-

spectral extinction.

.4
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Equation (27) is a Fredholm integral equation of the first kind;

the inversion of such relations is an example of an ill-posed problem.

I quote the excellent introduction of Viera and Box (1985):

Such [ill-posed] problems fail to fulfill one (and
often all three) of the following conditions: (i)
existence of a solution (ii) uniqueness of a solution,
and (iii) continuity of the solution on the data
function. Ill-posedness leads to a loss of infor-
mation and to highly unstable solutions: that is,
small changes in the data function (such as will
always arise from experimental error) can produce
very large changes in the solution. (p. 4525)

With few exceptions, the papers of this section can be attributed

to three groups of researchers: (i) Shifrin and/or Perelman and their

associates, (ii) Box and McKellar and their associates, and (iii) Fymat

and his associates. Each of these groups attempted, with varying

degrees of success, to overcome the difficulties outlined in the

previous paragraph. I will present each group's work in the order

listed above, which is in order of increasing simplicity of method, and

follow these with the remaining works.

The material available from the Shifrin-Perelman group all

originated in the Soviet Union between the years 1961 and 1980. I found

that the often poor quality of the Russian-to-English translations

hampered my ability to glean information from the articles; however,

translations aside, I also noted that the papers were presented in a

most unsatisfactory manner. First, many papers were written where a few

would have sufficed; the change from paper to paper was frequently

minor. Additionally, most of the papers extensively and necessarily

cross-referenced previous ones in the series. The necessity of the

cross-referencing arose from the fact that each paper was much too far
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from being self-contained; especially for the early papers, it was

virtually impossible to follow a given paper without all previous ones

at hand. Fortunately, the cross-references gave the exact location of

an item; however, many bibliographies in the series lacked page numbers

in their citations thus making it more difficult to locate a given

reference. Another major problem with the group's work was that they

rarely discussed the implications associated with replacing Qext by

AD
Q AD. Also along this line, it was often left unsaid that they were
ext

considering only nonabsorbing spheres. The last major problem

associated with the Shifrin-Perelman group's work was that of

inconsistent notation. For example, in the I8 papers I surveyed, T

appeared in nine different forms. Although the aforementioned items

definitely affected the readability of their collective works, I must

say in defense of the Shifrin-Perelman group that the content of their

papers still merits attention.

With the aid of Mellin's transformation, Shifrin and Raskin (1961)

AD
were the first to substitute QeAD into (27) and invert - to get n(a).

ext

When they used anomalous diffraction, the method was termed the

transparency method; when they performed a similar inversion in which
is

Qext was derived from the RGD approximation, it was termed the

indicatrix method. In the first study, small measurement errors in T(A)

lead to large errors in the solution; Shifrin and Perelman (1963a)

partially solved this problem. Next, Shifrin and Perelman (1963b)

performed a mathematical test. The multispectral extinction was

calculated using a y size distribution; then, this turbidity "data" was

used to invert (27). The Y-distribution was reproduced rather well.
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Similar tests were later performed for a power-law distribution

(Perelman and Shifrin 1968), a B-distribution (Perelman and Shifrin

1969), and a logarithmic distribution (Bakhtiyarov et al. 1966). The

latter test was slightly different in that exact Mie values were used

for the direct calculation of the "data," T(A). Additionally,

Bakhtivarov et al. (1966) finally made mention of the fact that using

anomalous diffraction introduces some error, although they claimed it

was negligible. Quantitative error analysis was needed but did not come

until Shifrin et al. (1969c). 1 this study, a size distribution was

AD
assumed and m varied. The error arising from using Qext instead of the

exact value was 3, 14, 18, and 20% for n = 1, 1.1, 1.3, and 1.5,

respectively. To return to the early work, in Shifrin and Perelman

(1963c), the effect of various assumptions on the experimental data was

analyzed. Also, they showed how to use either graphic or tabular

presentations of TW) to invert (27); improvements were offered in

Shifrin et al. (1969b). Shifrin and Perelman (1964a) continued the

previous analysis, but this time only for tabular data presentation;

also in this paper, qualitative estimates were given of the effect on

the determination of n(a) of errors in the measurement of T(A). In a

jump back to their earlier work, Shifrin and Perelman (1964b) provided a

compilation of the first three papers of the group: Shifrin and Raskin

(1961) and Shifrin and Perelman (1963a, 1963b). Later that year,

Shifrin and Perelman (1964c) discussed the effect of an almost

monodisperse y-distribution on the inversion of (27); additionally, they

concluded that although measurements of T were needed at all wavelengths

mathematically, 10-20 measurements over a broad wavelength spectrum

5%,
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would suffice. In one of their better works, Shifrin and Perelman

(1965) made a quantitative analysis of the effect of measurement errors

of T on the calculation of n(a). They found that T had to be measured

with an accuracy of 1-2%. Even though the mathematical tests of a

y-distribution had been done, experimental verification of the validity

of the inversion was lacking until Shifrin et al. (1966) provided it.

The particle spectra derived from the inversion of (27) and from electron

micrograph measurements were compared and reasonable agreement was found.

The best paper to start with if interested in Shifrin and Perelman's

inversion method is theirs of 1966. It is basically a review of their

work up to this date. Next, Perelman (1967a) improved the inversion

to give better agreement between the transparency and indicatrix

methods in the region of small phase shifts. Perelman claimed

that anomalous diffraction was valid for o<Im-1I<1 whereas the RGD

approximation was only valid for Im-1I<<1. While anomalous diffraction

can be used for m = 2, it is certainly not a very good approximation

there; Perelman's claim should not have beta made without qualification.

Perelman (1967b) departed from a more physical viewpoint to give a

thorough mathematical analysis of the inversion of first kind Fredholm

integral relations; this paper is a good source of information on these

functions. The only paper of the Shifrin-Perelman group to consider

absorbing spheres was that of Perelman and Punina (1969); unfortunately,

this paper was available only in German, so I can provide no more

information than that given in the abstract. A paper from this group

swhich I recommend avoiding is that of Shifrin et al. (1969a). I am left

with the impression that this paper was never proofread. For instance,

V
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even the title has a misprint; the word "Special" appeared where the

word "Spectral" should have. There are considerably more errors of this

sort and worse throughout the paper, and I do not know whether to place

the blame on the authors or the translator. Either way, I see no reason

why we should try to decipher it. After a break of 10 years, Shifrin et

al. (1979) offered an improved inversion method in which the multi-

spectral extinction data was approximated by modified Legendre

polynomials. To avoid divergence of the solution for the

Shifrin-Perelman inversion technique, it is necessary to know the short

wavelength limit of T(X). The new approach of Shifrin et al. allowed

for the direct extrapolation of T(X) to short wavelengths; in all prior

works, it had to be extrapolated separately. In the last papers of the

series, Perelman and Shifrin (1979, 1980) finally allowed m(X) to vary

as it should have all along. For their inversion, r must be measured

over a broad wavelength spectrum; to assume m(X) is constant over this

entire spectrum is foolish. The improvement was welcome and necessary

but long in coming.

Next we consider the Box-McKellar group. I found considerable

improvement in the clarity of their approach over that of the

Shifrin-Perelman group. The inversion of (27) under the Box-McKellar

scheme is dependent on the knowledge of the multispectral extinction and

of the zeroth and second moments of the size distribution; physically,

these moments are N, the number of particles per unit volume, and G, the

total geometric cross section per unit volume. Details on extracting

the two moments from the data were given in Box and McKellar (1976).

The actual application of the moments to the inversion of (27) was given



42

in Box and McKellar (1978b). Their inversion was valid if QeAD was
ext

substituted for the exact value in the turbidity equation and if n(a)

vanished faster than a as a + 0 for some positive c; this latter

requirement is almost always met in practice. Almost simultaneously

with Box and McKellar, Fymat (1978a) introduced his own technique for

the inversion of (27). Box and McKellar (1979) compared their and

Fymat's method and found Fymat's approach to be a more general method

than their own. In a further comparison, Box and McKellar (1981)

illustrated how their, Fymat's, and Shifrin and Perelman's inversion

methods were all related. They also showed that the Shifrin-Perelman

technique was the most susceptible to errors. Also in this paper, a new

inversion was introduced, although a discussion of its merits were left

for an as yet unpublished work. In the conclusion of their 1981 work,

Box and McKellar argued as to the value of analytic inversion methods

based on anomalous diffraction; they cited Walters (1980) as having

claimed to use Shifrin and Perelman's inversion scheme "apparently with

some success." However, to quote Walters, "[Shifrin and Perelman's

method] must be regarded as being of little value for this type of

application." Walters was comparing the size distribution predictions

of three inversion methods with experimentally measured size

distributions of fogs formed in supersonic stream flows. Besides

Shifrin and Perelman's method, he considered an empirical approach and a

matrix inversion method. Please note that equation (10) of Walters,

AD
which gives QeAD for nonabsorbing spheres, is completely wrong; see

ext

Table I for the correct expression. We cannot conclude that Box and

McKellar's inversion scheme is as poor in application; however, Box and
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McKellar's optimistic interpretation of Walters' (1980) conclusions

makes me wary of any of their claims. The last paper of this group is

an outstanding one by Viera and Box (1985). I have already quoted some

of their introduction at the beginning of this section. In this paper,

an analytic eigenfunction theory was used for the inversion of (27), and

ADto fully exploit the analycity, Qext was used instead of the exact Mie

value. Tests were performed to find the effects of certain assumed

knowledge of the solution on the ill-posedness of the problem. The

conclusions they reached on what the important factors were should be of

interest to those attempting remote sensing experiments in which data

inversion must be performed.

Finally, we consider the work of the Fymat group. As mentioned

earlier, Fymat (1978a) developed his inversion technique at nearly the

same time as Box and McKellar (1978b). Whereas the Box-McKellar

approach required a knowledge of the two moments N and G, Fymat (1978b)

showed that his method required only a knowledge of j. Fymat and Smith

(1979) continued to expound the virtues of Fymat's method. Since it

requires less information than the Box-McKellar method, Fymat's method

is simpler than that of the former. Box and McKellar (1978b) concurred

with this evaluation. Fymat and Smith gave a nice, concise listing of

the conditions necessary for the validity of both the Fymat (1978a) and

the Box and McKellar (1978b) inversion techniques. Fymat and Smith

noted that equation (10) of Fymat (1978a) was invalid because the

integral diverges; the results were unaffected however.

The remainder of this section is devoted to three papers not

associated with the previous groups' works. I have already covered
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Walters (1980) under the Box-McKellar review. The other two papers are

Smith (1982) and Klett (1984). Smith (1982) generalized Fymat's (1978a)

inversion technique to allow for the variation of the complex refractive

index with wavelength. He used van de Hulst's (1957, p. 179) expression

AD
for Qext for absorbing spheres as the kernel of (27). Smith's paper is

nicely presented and mathematically complete. Klett (1984) was not

aware of Smith's (1982) paper for he cited Perelman and Punina (1969) as

the only paper prior to his to consider absorbing spheres for the

inversion of (27). Klett, like Smith and Perelman and Punina, used van
AD

de Hulst's (1957, p. 179) equation for QexD for absorbing spheres. He
ext

gave the expression in his equation (6), but it is given incorrectly.

The last term of his equation (6) should contain the factor (cos /p)

squared, not to the first power. Klett otherwise has an excellent paper

here. He was the first to really address the practicality of the

various inversion methods based on anomalous diffraction. Klett

developed a new inversion technique that may be as good or better than

AD
all previous methods. He empirically adjusted QeAD to give better

ext

agreement with the Mie theory before he used it as the kernel of the

turbidity equation. Although Klett's inversion scheme may be best, we

must wait for conclusive experimental verification of all of the

analytic inversion methods based on anomalous diffraction before we can

make such a determination.

1.3.2 Right Circular Cylinders and Discs

The infinite right circular cylinder is another particle shape for

which an exact calculation of the light scattering can be made, yet an

infinite cylinder is a physically unrealistic particle. What we

r-
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actually wish to consider is a cylinder with an axial ratio

(length:width) so large that end effects can be ignored. Bohren and

Huffman (1983, p. 211) determined that in the limit of Fraunhofer

diffraction, a cylinder could be considered essentially infinite if the

axial ratio was greater than 10:1. Since van de Hulst (1957, Ch. 11)

developed his approximation from a consideration of Fraunhofer

diffraction, I will assume that the same axial ratio applies to

anomalous diffraction. Also in this section, I will discuss the thin

disc. Although no exact theory applies, a disc is, after all, just a

short cylinder.

Unlike the sphere, the cylinder has shape anisotropy; consequently,

the optical efficiencies are polarization dependent in the exact

theory. Since anomalous diffraction is a scalar theory, however, no

polarization dependency is shown. Also because of the cylinder's shape

anisotropy, the angle of orientation becomes an important parameter.

Even with this additional parameter, we will find that anomalous

diffraction works quite well for the cylinder and yet is still simple.

1.3.2.1 Single Cylinders and Discs

Van de Hulst (1957, p. 313) obtained a closed-form solution for

AD
Qext of an infinite, nonabsorbing cylinder at normal incidence. Little

discussion was offered, and the expression did not reappear until Kerker

(1969, p. 290) cited it in his review of anomalous diffraction. Later

that same year, Bryant and Latimer (1969) generalized van de Hulst's
AD AD

work by giving Qext and Qabs for arbitrarily oriented, absorbing
ext abs

infinite cylinders; they also gave the same quantities for a thin disc.

AD AD
A closed-form expression for Q A or Q was not yet offered for the

ext abs
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cylinder, but such expressions were given for the disc (see Table 2).

AD
In the overview, I noted that Qext approaches the correct asymptotic

value of two as x + - for many particle shapes, the nonabsorbing disc is

not such a shape. To the incoming light, the face of an infinite disc

would appear as a slab; the phase shift through all portions would be
AD

the same. For the case of no absorption, Qext for a disc takes the form
AD

of an undamped, oscillating function (see Table 2); as x Q Dext can

assume any value between two and four.
AD AD

In 1970, closed-form expressions for QeAD and QAD for the
ext abs

absorbing, infinite cylinder at arbitrary incidence were finally given

by Cross and Latimer. The angle of incidence was defined by the normal

to the cylinder axis and the incident direction. Cross and Latimer

noted that at very oblique incidence, refraction effects could not be

ignored, so they offered an empirical factor to correct for these

effects. Cross and Latimer's paper was outstanding in its straight-

forwardness and simplicity. Their paper was quite a contrast to

Stephens' (1984). Stephens apparently unaware of the previous results
AD

of Cross and Latimer, obtained his own closed-form 
expressions for Qext

AD
and Qabs for the arbitrarily oriented, absorbing, infinite cylinder. In

Stephens' paper, the angle of incidence was defined by the cylinder axis

AD AD
and the incident direction. Stephens' expressions for Qext and Qabs

appear at first sight to be quite different from those of Cross and

Latimer, but I have shown that the expressions are equivalent (see Table

AD
3). Stephens' relation for QAD was actually not different at all,

abs
rather it suffered from the following typographical error: the LI in

his equation (21) should have been an L. Stephens' paper has many other
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errors, some typographical, some not. Stephens began his paper

rather well by giving the exact theory in detail. He went on to find

AD ADthe expressions for Qext and Qabs and used the former to find Qext for

two cases: (i) a monodispersion of randomly oriented, nonabsorbing

cylinders, and (ii) a polydispersion of oriented, nonabsorbing

cylinders. For the latter case, Stephens' equations (23), (24), (26),

and (27), giving respectively G, T, aeff , the effect radius of the

distribution, and Veff , the effective variance of the distribution, are

all incorrect. These four equations, as they stand, are valid only for

2
spheres, not cylinders. Assuming normal incidence, the factor 7a in

each equation should be replaced by the factor 2aL, where L is the

3
length of the cylinder. In his equation (26), the factor 7a should be

replaced by the factor ia 2L. Fortunately, the graphs resulting from

these equations were unaffected by the errors. I think Stephens' paper

illustrates the importance of accurate proofreading very well. In

addition to the aforementioned errors, Stephens also badly misinter-

preted the meaning of n'; since I discussed this previously, I will not

repeat it here. Stephens has assured me that an errata will be

forthcoming.

As with spheres, papers comparing the predictions of anomalous

diffraction to those of the exact theory can also be found for

cylinders. The first, for real m only, was that of Sharma et al.

(1981). They compared the anomalous diffraction, RGD, Eikonal, and

first-order corrected Eikonal (FCE) approximations predictions of the

forward scattered light intensity with those of the exact theory for

- 0.6328 pm, 1.05 < n < 1.5, and 0.2 < x < 25. The first-order

N N%
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correction to the Eikonal approximation was not elaborated on; it makes

the Eikonal approximation much more complex, but the results are

considerably improved. Whereas no similar study was done for spheres

with complex m, such a study was performed for cylinders with complex

m by Sharma and Somerford (1983). The same approximations as in Sharma

et al. (1981) were compared in the same way for 1.05 S n < 1.15,

10- 3 < n < 1, 1 < x < 20, and X - 0.6328 pm. I have already cited the

usefulness of such papers and will not do so again. The final

comparison paper, similar to the previous two, is that of Sharma and

Somerford (1982). Like the previous two papers, the same approximations

were compared with the exact theory. Unlike the previous two papers,

the 0* < e S 600 scattered light intensity was used for the comparison.

The incident light was assumed normal to the cylinder axis; the

scattered light intensity in the plane of the normal was calculated.

The authors claimed that anomalous diffraction was a poor approximation

to the exact theory for all trials, but their figures indicated that it

worked fairly well for 6 < 300 and n < 1.5. Part of the reason for the

poor predictions of anomalous diffraction may lie in the expression that

Sharma and Somerford used for their anomalous diffraction calculations.

Sharma and Somerford purported to have used van de Hulst's (1957,

p. 184) approach to getting S(e) from S(0), yet I can in no way

determine how. Their S(6) agrees with my equation (16) for = 0*

except that where I have the factor exp(-ik O) under my integral, they

have the factor cos(ik&6) - Re{exp(-ikE6)}. My more general expression
re

d reduces to van de Hulst's for spheres and is in agreement with Meeten

.. . . . . . .
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(1982b); consequently, I suspect Sharma and Somerford's expression to be

in error.

1.3.2.2 Monodispersions

Only Bryant and Latimer (1969), Champion et al. (1978), and

Stephens (1984) considered cylindrical monodispersions. I have said all

that I will about the latter paper. Bryant and Latimer gave a nice

synopsis of methods for calculating the turbidity of randomly oriented

cylinders and discs. Bryant and Latimer noted that a thin disc, for

example, may present a dimension to the incident beam which is in

violation of the condition for the applicability of anomalous

diffraction; however, they concluded that few enough particles would be

oriented at such extremes so as not to affect the results significantly.

The paper by Champion et al. (1978) was previously discussed in section

1.3.1.2, and my comments can be found there. They derived expressions

for the refractive index increment of colloidal spheres and oriented

discs in the Rayleigh, RGD, and anomalous diffraction approximations.

1.3.2.3 Polydispersions

Stephens (1984) is the only source here. He considered only

aligned cylinders. Because of the many errors in Stephens' paper, I

recommend that it be used with extreme caution.

1.3.2.4 Biological Particles

Bryant et al. (1969a) is the only source here. They modeled

E. Coli cells as infinite cylinders with good results. For further

details, consult section 1.3.1.4 where this paper was reviewed.

1.3.3 Cubes, Square Plates, Hexagonal Plates and Octagonal Plates

Anomalous diffraction is of greater utility for cubes and thin

square, hexagonal, or octagonal plates than for spheres and cylinders

k-
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because no exact solutions exists for these particle shapes. Yet

crystals of these shapes are often encountered in nature, the hexagonal

plate of ice being a familiar example. The RCD approximation can be

applied to these shapes but is not as accurate as anomalous diffraction

in the size range 1 < x < 20.

1.3.3.1 Single Particles

The first paper of this section and the only one to consider cubes

AD
was that of Napper (1967). He derived QeAD assuming real m for three

ext

simple cube orientations: face, corner, and edge incidence. Table 4

AD
gives the expressions. The relation for QeAD of a nonabsorbing cube at

ext

face incidence is the same as that for a nonabsorbing disc at face
-AD

incidence; therefore, the cube is another particle shape for which QAD
ext

does not approach its correct limit as x - . Napper made an admittedly

crude attempt to model a monodispersion of randomly oriented cubes by

assuming that the probabilities of face, corner, and edge incidence were

3:6:4, respectively. Napper's paper was clear and concise; I think he

demonstrated the need for approximate theories rather nicely. Kerker

(1969, p. 127) gave a review of Napper's work.

Next, Champion et al. (1979a) used anomalous diffraction to

successfully predict experimentally observed transmission changes in

shear-flow oriented monodispersions of kaolinite crystals. The

transmission changes were induced by varying the velocity gradient of

the orienting medium, the particle size, the wavelength, or the crystal

concentration. Kaolinite crystals are hexagonal plates but are rarely

found in perfect form, thus square and octagonal plates were considered

as models of chipped crystals. The crystals were assumed to be thin and

"'.
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nonabsorbing; a 10:1 axial ratio was used in all calculations. Champion

et al. assumed that the light traversed the thinnest dimension of the

crystals; they provided expressions for CAD  for all three crystal
ext

shapes at various orientations. Champion et al., in contrast to Napper

(1967), were difficult to follow and some of the notation was poor.

1.3.3.2 Monodispersions

It is evident from the previous section that Napper (1967) and

Champion et al. (1979a) applied their approximations to monodispersions;

however, I will not repeat my comments here. The only other paper to

consider is that of Meeten (1979). Meeten used anomalous diffraction to

derive an expression for the optical anisotropy parameter. For an

optically anisotropic particle of optic axes, a, b, and c. with

refractive indices of ma, mb, and mc = m, respectively, the optical

anisotropy parameter is proportional to (ma - mb). A previous

formulation of the optical anisotropy parameter, which was derived from

a dipole approach, predicted no size dependence for the parameter, yet

size dependence was observed experimentally. Meeten found that his

approach, using anomalous diffraction, gave a satisfactory explanation

of the experimentally observed size dependence of the optical anisotropy

parameter for weakly birefringent kaolinite crystals. Meeten considered

the same crystal shapes as Champion et al. (1979a), i.e., the square,

hexagonal, and octagonal plates. Immediately following equation (18) of

Meeten, there is a misprint which I feel must be corrected. In a single

sentence, Meeten claimed that the size parameter x was dimensionless

then gave it as x - k which is dimensional. Meeten must have intended

x = kt where t is the thickness of the particle over which the light is
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transmitted. The reason I found the error so troubling was that two

graphs soon followed in Meeten's paper in which x was a coordinate.

1.3.4 Spheroids

The spheroid, an ellipsoid of revolutio i, has become an

increasingly popular shape with researchers over the past two decades.

Only recently has an exact solution for light scattering by an ellipsoid

become available (Asano and Yamamoto 1975). The exact solution is

rather cumbersome to use in practice, so the anomalous diffraction

expressions for the optical efficiencies are still welcome. We will

assume the spheroids to have axes of radii a, a, and b; the axial ratio

is given by v - b/a. For the oblate spheroid, v < 1; for the prolate

spheroid, v > 1. The popularity of the spheroid is due to the fact that

it can be used to approximate other particle shapes. For instance, a

highly oblate spheriod is an excellent model of a disc while a highly

prolate spheroid is an excellent model of a cylinder. On the other

hand, as the axial ratio approaches unity, the spheroid reduces to a

sphere. The deviation of the axial ratio from unity is usually referred

to as the asphericity.

1.3.4.1 Single Spheroids

The first paper of this section is that of Bryant and Latimer

(1969). This is an excellent paper on anomalous diffraction in general,

and I have already cited it in the sphere and cylinder sections. Bryant
AD AD

and Latimer's approach to obtaining QeAD and QAD of the spheroid was toext abs

model it as a sphere with a modified phase shift; see Table 5 for the

results. They provided superb graphs Illustrating the effect of

AD QAD
particle shape (sphere, disc, cylinder, and cube) on Qext and Qabs

ex as

r ( % -
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Bryant and Latimer also gave a fine review of ways to calculate Qext

and Qabs for monodispersions of various (cylinders, discs, and spheroids)

randomly oriented particles. Furthermore, they showed that for small

asphericity (v z 2), a randomly oriented monodispersion of spheroids

could be approximated very well by a monodispersion of spheres of equal

volume. One point I disliked about their graphs was that m was not

usually given, thus the graphs seemed untied to reality. Latimer

(1975a) developed an improved, yet considerably more complex hybrid

method to predict light scattering by spheroids; the hybrid was based on

both anomalous diffraction and Mie theory. First, anomalous diffraction

principles were applied to a spheroid of given size, shape, orientation,

and refractive index, and the results were used to define an equivalent

sphere; subsequently, the exact Mie theory was used to calculate the

scattering of this equivalent sphere. In the method Latimer denoted

AM-I, the radius of the spheroid was redefined; in the method he denoted

AM-II the refractive index of the spheroid was redefined. Latimer used

the RGD approximation in an identical way to get the similar methods

RM-I and RM-II. Latimer's paper was often vague; at times it was not

clear which method or which particle (equivalent sphere or spheroid?) he

was discussing. For a monodispersion of randomly oriented spheroids,

Latimer presented graphs of scattered intensity versus angle in which he

compared his various methods. I did not see the value in this since he

had not yet determined how well any of the approximations compared with

experimental observations (the exact solution for spheroids was not

available at this date). In Latimer and Barber (1978), the predictions

.1
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of scattered light intensity of Latimer's (1975a) methods were compared

to the same predictions of the extended boundary condition method (EBCM)

of Barber and Yeh (1975). All calculations were for real m only. The

EBCM solves Maxwell's equations numerically for spheroids and other

particle shapes. All of the methods were in good agreement except for

AM-I. Regardless, Latimer and Barber felt compelled to include it in

their already overcrowded graphs. In another follow-up to Latimer

(1975a), Latimer et al. (1978) used the former's methods AM-It, RM-I,

and RM-II to compute and compare scattered light intensities for several

spheroid axial ratios aud at different orientations. Latimer et al.

presented excellent polar plots of the angular scattering intensity for

the various spheroids considered. Since the exact Mie theory was used,

angular intensities could be calculated at all angles; however, since

the equivalent spheres were derived from an anomalous diffraction

consideration in the AM-II method, I question the validity of large

angle scattering calculations for AM-II. Latimer et al. went on to give

a nice discussion of various particle-sizing apparatus and techniques;

they determined that for spheroids, the shape and orientation would most

affect the results; the refractive index effects would be secondary.

Latimer informed me that equations (A2) and (A3) of Latimer et al. (1978)

were incorrect; they should be corrected as follows (in their notation):

i) in (A2), the cos (0/2) in the first term and the sin (e/2) in the

second term should be interchanged; (ii) in (A3), the cos p in the

second term should be a cos w. Next, Latimer (1980) compared his

approximate methods' (AM-II and RM-I) predictions of Qext for a

monodispersion of randomly oriented spheroids with published values of
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the same derived from from the exact theory for m = 1.33 and m - 1.33 -

0.051 (Asano and Sato 1980). The agreement was even better than Latimer

expected; even the worst agreement, for very oblate spheroids, was

within 10% of the exact values.

Another method for predicting light scattering by spheroids was

discussed in a 1982 paper by Ravey and Mazeron. The method was termed

the physical optics approximation (POA) in order to distinguish it from

the simpler approach of geometric optics. In the POA, Maxwell's

equations are integrated over the surface of the scatterer; since the

fields at all points on the scatterer are not known in general, they

must be approximated. In the approximation, it is assumed that the

fields at any point on the surface can be given by Fresnel's equations

evaluated on a plane tangent to the point. In this paper, Ravey and

Mazeron presented the POA and noted how it could be applied to part of

the domain of anomalous diffraction; for the POA, 2xjm-1>>1 is

required. Erroneously, Ravey and Mazeron claimed that for anomalous

diffraction, both n and n' had to be near unity; n' << I is the correct

requirement. In a follow-up study, Ravey and Mazeron (1983) compared

various light scattering predictions of the POA with those of the Mie

theory, the RGD approximation, anomalous diffraction, and Fraunhofer

diffraction for spheres and with those of the exact method, EBCM, the

RGD approximation, and anomalous diffraction for spheroids. Real and

complex m were considered. Ravey and Mazeron presented their results in

easy-to-read graphs. For its complexity, the POA does not seem to work

as well as anomalous diffraction for spheres; it is better for certain

spheroid orientations, however. The anomalous diffraction computations

PV
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for spheroids were similar to the simple method of Bryant and Latimer

(1969); it would have been interesting to see the POA compared to

Latimer's (1975a) methods for spheroids. Ravey and Mazeron are, like

many others, guilty of misinterpreting n'. The called n' = 0.01 "small"

absorption, yet gave no indication of wavelength. I suspect from their

content that Ravey and Mazeron were assuming wavelengths of the order of

visible light, hence n' = 0.01 would imply "very strong" absorption. In

a continuance of the previous work, Ravey (1985) explored the dependence

on real refractive index of the first extrema in the angular light

scattering pattern of spheres and spheroids. He compared the

predictions of the POA, the RGD approximation, Fraunhofer diffraction,

and anomalous diffraction. As Ravey and Mazeron (1983) had done, Ravey

presented his results in excellently prepared graphs. Ravey's study

showed how good anomalous diffraction could be considering its

simplicity.

1.3.4.2 Monodispersions

Bryant and Latimer (1969) and Latimer (1975a, 1980) all considered

monodispersions. For details on these papers, consult the previous

section. The only other papers to consider in this section are those of

Khlebtsov and Shchegolev (1977), Khlebtsov et al. (1978a), and Meeten

(1980c, 1982a).

Khlebtsov and Shchegolev (1977) and Khlebtsov et al. (1978a) are

papers very much like those of Box and McKellar (1978a) and Fymat and

Mease (1978) in that while the study of the inverse problem of light

scattering was their ultimate goal, the direct problem was considered

first so as to gain insight into the dependencies of the important
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parameters; consult section 1.3.1.3 for further details. Khlebtsov and

Shchegolev (1977) used anomalous diffraction expressions for Qext to

calculate Q ext' /N, w, and s, the structure factor, for a monodisperse

system of randomly oriented prolate spheroids. Equation (26) of this

thesis gave w; it is related to s by

s Wext- (28)

Note that for this study, Qext would be replaced with Qext in (26) and

(28). The dependence of the four parameters on real m, x, and was

desired for future research on inversion methods for spheroids; for

further information on these inversion methods, consult all of section

1.3.4.4. Khlebtsov et al. (1978a) conducted a completely analogous

study for randomly oriented oblate spheroids. Additionally, however,

they calculated the same four parameters using the RGD approximation.

Both Khlebtsov and Shchegolev (1977) and Khlebtsov et al. (1978a)

provided excellent tables illustrating the dependence of Qext on w and 0

for various axial ratios.

Meeten (1980c) is a good, simple paper. In it, the Rayleigh, RGD,

and anomalous diffraction approximations were used to find the effect of

particle shape on the refractive index of a colloidal dispersion. The

dispersion was modeled as a collection of randomly oriented,

nonabsorbing spheroids; the effect of asphericity on the refractive

index of the dispersions was predicted to be large by all three

approximations. Interestingly, the expressions Meeten derived from all

of the approximations approached the same limit as (m-1) - 0 and x 0.

%%
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Meeten (1982a) derived integral expressions for the linear

birefringence and linear dichroism of a colloidal dispersion of nearly

aligned, optically anisotropic, nonabsorbing spheroids. This paper

continues the work begun in Meeten's 1980a and 1980b papers; since the

application of anomalous diffraction is essentially the same here, I

refer the interested reader to my reviews of the 1980a and 1980b papers

in section 1.3.1.2.

1.3.4.3 Biological Particles

Many biological cells could be modeled as being spheroidal;

however, the literature on anomalous diffraction in which this is done

is scarce. The first paper to appear along these lines was that of

Bryant et al. (1969a). They used anomalous diffraction applied to a

spheroid to model scattering by yeast cells and spinach chloroplasts.

Bryant et al.'s theoretical predictions were in good agreement with

experimentally determined light intensities from both of these

particles. For further details on this paper, I refer the reader to

section 1.3.1.4. Later, Latimer (1975b) used the AM-II method of his

1975a paper to try to theoretically predict the experimentally observed

changes in extinction that arose from structural changes in blood

platelets. The actual structural change is that the originally

disc-like platelets become nearly spherical upon activation by certain

compounds. The spheroid then was a useful model since it could be used

to represent both extremes of the platelet shape. Latimer's theoretical

predictions were in agreement with experimental observations, thus the

value of his simple model became evident. Lastly, Ravey (1985) explored

the evolution of the first extrema of the angular scattering intensity

A k - - - *
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as the refractive index was changed. He considered srheres and

spheroids and assumed both were nonabsorbing. I have already reviewed

this paper under the single spheroid section, and my comments will not

be repeated. I included this paper here because it arose out of Ravey's

interest in the determination of blood cell size from small angle light

scattering measurements. Blood cells are nearly spheroidal in shape.

1.3.4.4 Inversion Techniques

The papers in the following section on monodispersions are the last

of this literature review. Unlike for spheres, no studies were done on

analytic inversion techniques for spheroidal polydispersions.

1.3.4.4.1 Monodispersions

Shchegolev and Klenin (1970, 1971), both of which were reviewed

under section 1.3.1.5.1, showed that for spheres, measurements of T(A)

over a narrow wavelength spectrum could be used to find the size,

concentration, and refractive index of the spheres if the wave exponent

and structure factor were also known. For a spheroidal monodispersion,

these parameters (size, concentration, refractive index) can also be

calculated, but they apply to a sphere of equal volume. Shchegolev et

al. (1977) used mathematical tests to find the error incurred by

considering such equivalent spheres. The direct calculations of T/N, w,

and s for prolate spheroids from Shchegolev and Klenin (1977) were used

as the input "data"; then, the size, concentration, and refractive index

of equivalent spheres were calculated from this "data." I do not think

this was very good test; since the "experimental data" arose from the

anomalous diffraction approximation, some real information was

necessarily lost. The actual error is probably somewhat higher than

-:|
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Shchegolev et al. reported. As expected, use of the equivalent sphere

method gave best agreement for small asphericity. A similar test was

performed in which the RGD approximation was used. Khlebtsov et al.

(1978b) performed an identical analysis to that of Shchegolev et al.

(1977) except that they considered oblate spheroids. The direct

calculations of T/N, w, and s for oblate spheroids from Khlebtsov et al.

(1978a) were used as the input "data." The final paper of this

literature review is that of Khlebtsov et al. (1978c). They showed,

using both the RGD and anomalous diffraction approximations, that the

minor semi-axes and weight concentration of highly aspheric, randomly

oriented spheroids could be calculated from a knowledge of the wave

exponent. The spheroid could be highly oblate or prolate, and the

predicted values could be very accurate depending on the values of the

wave exponent and axial ratio.

i "
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Chapter 2

THEORY

2.1 The Problem

In the usual considerations of diffraction, an arbitrary wave is

incident from the -z direction on certain apertures in an infinite,

perfectly conducting thin screen S. Assuming the apertures to be

located in the plane z - 0, then the field at z > 0 will be in

directions other than the incident due to the presence of the apertures.

For many purposes, it is sufficient to consider the incident wave to be

a scalar wave. If the wavelength of the incident wave is small compared

with the dimensions of the aperture, then Kirchoff's (scalar)

mathematical formulation of Huygen's principle can be used to calculate

the field at z > 0 which we will call the diffracted field. In order to

use Kirchoff's formula, it is necessary to know the value of both the

wave and its gradient over every portion of the plane z = 0; however,

these values in general are not known, thus approximate values must be

used. In the Kirchoff approximation, the values of the wave and its

gradient are assumed to be zero everywhere on S; these values in the

apertures are assumed to be those of the incident field. Further

simplication arises in the calculation of the diffracted field if we

assume that the observation point is many wavelengths removed from the

apertures, in other words, if we assume we are in the far field; this

last assumption confines consideration of diffraction to what is

historically referred to as the Fraunhofer zone. In fact, when

diffraction is mentioned in the literature, It is usually Fraunhofer

diffraction which is meant.
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Once the diffracted field arising from the apertures is known,

Babinet's principle becomes useful. Babinet's principle relates the

diffracted fields of a particular diffracting system to those of its

complement. As a simple example, let us consider a screen with a

circular aperture of radius a cut into it; the complementary screen is a

disc of radius a. Babinet's principle tells us that the diffraction

patterns of both systems are equivalent, in fact, the diffraction

pattern by a perfectly opaque sphere of radius a is also the same within

the limits of the approximation.

Van de Hulst derived his anomalous diffraction approximation from

the considerations of the previous two paragraphs, although he

generalized them to allow for transmitted light. Since anomalous

diffraction was derived from scalar postulates, the polarization state

of the incident radiation is not a factor in the calculations of Q
ext'

Qabs' and dC sca/d. In general, however, these efficiencies are

functions of the polarization state of the incident beam. An exception

is the homogeneous sphere; both Q and Q are polarization
ext abs

independent due to the sphere's symmetry. I consider the polarization

independence of anomalous diffraction to be its greatest disadvantage.

Perhaps this deficiency could be overcome by the application of vector

formulations of diffraction to anomalous diffraction; this is the

% purpose of this thesis and the derivation will follow.

2.1 Vector Formulations of Anomalous Diffraction

In the next two sections, anomalous diffraction expressions will be

developed from a consideration of both the Kirchoff and Kirchoff-Kottler

%°
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vector formulations of Huygen's principle. The derivation will proceed

analogously with that of section 1.2 except that here I will consider

only Qext and dC sca/dSI for a right circular cylinder; there is no need

to complicate matters with exotic particle shapes until the validity of

the approach is either proved or disproved. The right circular cylinder

is probably the simplest shape-anisotropic particle to consider with an

anomalous diffraction approach. The cylinder will be assumed to have a

length of L and a width of 2a.

Only steady state problems will be considered. The time factor of

the electric (E) and magnetic (H) fields will not be explicitly written,

but it will be understood to be exp(-iwt) where w is the angular

frequency and t is the time. The right-hand Cartesian coordinates ,

and z will be used with corresponding unit vectors V 1' 2 and e3" I

will let the cylinder's long axis lie along the E axis and let the

incident beam be from the -z axis. Since any polarization state can be

expressed as some linear combination of two mutually orthogonal

polarization states, I will consider the two cases of transverse

magnetic (TM) and transverse electric (TE) polarizations. Assuming

normal incidence, and designating the incident wave vector as k = 3s

we find the following expressions: (i) for TM polarization, the

incident fields are given by

0 - E 0 exp(ikoz)

(29)

H 0 2 exp(ikoz)

(ii) for TE polarization, the incident fields are given by

7
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o = -Eo A2 exp(ik z)

(30)

H= H 0I exp(ik z)
0 ol 0

Outside the diffracting system, all space will be considered to be

homogeneous and isotropic with a real index of refraction equal to one.

With the preceding points in mind, I will begin.

2.2.1 Application of the Kirchoff Formula

Jackson (1975, p. 432) provided Kirchoff's vector formulation of

Huygen's principle. In this approach, the scalar Kirchoff formula is

simply applied to each of the six field components (three each from

and H).

For the vector case, equation (6) becomes

C 1r. Re {9(0) A I G Q(1ext k2 oE ext (31)

where S(O) is the vector forward scattering amplitude, and AoE is a unit

vector in the direction of polarization of the incident electric vector.

Appendix A provides details of the calculation of 9(0) from the Kirchoff

formula. In analogy with van de Hulst, we will generalize 9(0) to

include rays transmitted through the cylinder, thus equation (51)

becomes

(O) 2- [3 x (e3 X io)] f()-e-)dtdn (32)

The substitution of , - A oE for a TM wave or -92 = AoE for a TE wave

into equations (31) and (32) will give equal values of Q ext; therefore,
ext*

N *



71

the modification of anomalous diffraction with the Kirchoff formulation

of vector diffraction still fails to predict a polarization dependent

extinction efficiency.

To calculate the differential scattering cross section, we need to

add a factor to §(0). By analogy with equation (16), we get

S(e,%) -k (1+cose) )e iksine(-cos2+lsino)dd x x
41r [ek ( 3  eoE)I A(I-e - (3)

(33)

where 8k is a unit vector in the direction of observation. From a

consideration of Figure 2, k can be written

ek = sin e cos * l + sin e sin e2 + cos e e3  (34)

Now, we must consider the two polarization states. For TM

polarization 6oE a aI; for TE polarization, eoE = -e2. For either case,

only the factor [ak x (@3 x 6 oE) ] is affected in equation (33), so I

will give the remainder of the equation the designation k(F) . From

equation (17), for the TM case we find

dC
sca= 2 2 2
d---- F [sin 2 cos 0 + cos26] (35)

For the TE case, we get

* dC
sca . F [sin 28 sin 2 + cos28] 

(36)
dS
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An inspection of (35) and (36) shows that dC /d1 is predicted to besca

polarization dependent. However, if we recall that in equation (16) we

required e to be small, then sin 8 = 0, and sin2 0 is even smaller.

Consequently, the first terms of both equations (35) and (36) are

negligible within the limits of the approximation, thus dC /d' is nosca

longer predicted to be polarization dependent.

2.2.2 Application of the Kirchoff-Kottler Formula

Bouwkamp (1954) gave the details of the Kirchoff-Kottler vector

formulation of Huygen's principle in his excellent review of

diffraction. When the scalar Kirchoff formula is applied to the six

field components, the six wave functions so obtained do not satisfy

Maxwell's equations in general. Kottler noted that this difficulty

could be overcome by introducing additional tenms in the Kirchoff

formula representing the effects of fictitious line charges along the

rim of the aperture. In this section, the Kirchoff-Kottler relation

will be used to modify anomalous diffraction. It is hoped that

Kottler's improvements of the Kirchoff relation will allow for the

prediction of polarization depeindent extinction and differential

scattering cross sections.

Again, we nead to know S(O). Appendix B provides the details of

the derivation of 9(0) from the Kirchoff-Kottler relation. By analogy

with van de Hulst, we generalize 9(0) to include rays transmitted

through the cylinder, thus equation (57) becomes

2
S(O) = - {[63 x (43 x AoE ]

- [e3 x (A3 x (63 x (93 x AoE)))]} A(1-e-0 )d~dn (37)

......... ,, *........................................... ....
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Chapter 3

CONCLUSIONS

The extinction efficiency and differential scattering cross section

of a cylinder at normal incidence were calculated with vector-modified

anomalous diffraction expressions. In one case, the modification was

based on the Kirchoff vector formulation of Huygen's principle. In

another case, the modification was based on the Kirchoff-Kottler vector

formulation of Huygen's principle. In neither case did the modification

enable the polarization dependency of Qext to be predicted. In both

cases, the polarization dependence of dC /dQ was predicted, but withinsca

the limits of the approximation, i.e., for small angle light scattering,

the polarization dependence vanished. In conclusion, both modifications

of anomalous diffraction must be considered failures since no new

information is gained with the added complexity.

The fundamental deficiency of both methods seems to lie in the

Kirchoff assumption that the exact fields at the diffracting obstacle

can be replaced by the unperturbed incident field. This assumption

seems reasonable in light of the anomalous diffraction assumption that

Im-11<. If some knowledge of the exact functional form of the fields

at the diffracting obstacle could be obtained, perhaps the polarization

dependence of the extinction efficiency and differential scattering

cross sections could be found in a simple way. However, I doubt that

the resulting expressions would maintain the simplicity that makes

anomalous diffraction so useful.
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Jackson (1975, p. 438) provided the expression, derived from

Kirchoff's vector formulation of Huygen's principle, for the field

diffracted by an aperture located in a thin, perfectly conducting

screen. Assuming the radiation is incident from the -z direction and

that the aperture is in the z = 0 plane, it is

ED i - x e ikR d~dn (46)

where ED is the diffracted field in the region z > 0, V is the three-

dimensional del operator, ft is a unit normal on the aperture pointing

into the space z > 0, E is the field in the plane z - 0, R is the

distance from a source point on the aperture to the observation point

P, and C and n are source-point coordinates in the aperture. The

integration is taken over the aperture area, and the del operator is

applied to the source-point coordinates.

If the observation point is located far from the aperture

(kR >> 1), then kR can be expanded as

kR - kr - ki k'' + h.o.t. (47)

wh,.e r is the distance from the origin (assumed to be located somewhere

in the aperture) to the observation point, ek is a unit vector in the

direction of observation, and ' is a vector from the origin to the

source-point. If we neglect the higher order terms (h.o.t.), then we

are considering Fraunhofer diffraction.

Consider Figure 2. The aperture area is equal to the projected

area of the cylinder under consideration. From the definitions of e and

* in the figure, we can rewrite (47) as

% % % %. ** e ' .' . . .- , . .,. -..o .. ***..°- ., -.-.- .,.'-.
.

_. .- . ...-.-.- .,. .. , * -.._ - -"_-.". ,
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kR - kr - ksin6(tcosO + nsinO) (48)

If we substitute (48) into (46) along with the usual Kirchoff assumption

that the field in the aperture can be approximated by the unperturbed

incident field, i.e., E = Eo AoE' we get

E eikr

"ED - o S(8,i) (49)

where

-k2  e- iksinx(xcos+nsin) ddn (50)
2S- ['k x (e3 x 'oE) ] fA

is the vector scattering amplitude and where &oE is a unit vector in the

direction of polarization of the incident electric vector.

Equation (50) applies to an aperture, but we are interested in

diffraction by a cylinder. Babinet's principle for an electromagnetic

wave states that the diffraction of a TE wave by an aperture is

equivalent to the diffraction of a TM wave by the aperture's complement.

Therefore, once the aperture diffraction problem is solved for both

polarization cases, the complementary problem is also solved.

Furthermore, we will assume that within the limits of the approximation,

the diffraction pattern of a perfectly opaque cylinder is equal to that

of a thin, perfectly conducting screen equal to the cylinder's projected

area.

To calculate the extinction efficiency, we need to know S(O), the

vector forward scattering amplitude. As 8 0 0, ek + e3 and (50) becomes

_ 2

S(O) - ~-~c(3 x (&3 x oE)] A ddn (51)



APPENDIX B

CALCULATION OF S(O) FROM THE KIRCHOFF-KOTTLER
VECTOR DIFFRACTION RELATION

U
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Bouwkamp (1954, p. 58) provided the expression, derived from the

Kirchoff-Kottler formulation of Huygen's principle, for the field

diffracted by an aperture located in a thin, perfectly conducting

screen. Assuming the radiation is incident from the -z direction and

that the aperture is located in the plane z 0, it is

ikR
ED x A[ft x El 0  -d

ikR
- x V x 1 A x H]z0 -R (52)

V Vx41ik A z.) d~dn

where the variables are equal to those of Appendix A.

All of the general considerations of Appendix A and Figure 2 will

again be used here. For an incident plane wave with the fields given by

E = EoAoE and Ho 0 HooH' the fields are related by

0 k-[ko x Eo1 (53)

where o and A are unit vectors in the direction of polarization of
oE oH

the incident electric and magnetic vectors, respectively, and ko - kA3

is the incident wave vector. As before, the values of the fields in the

aperture are taken to be those of the unperturbed incident wave; also,

the Fraunhofer limit is taken to get

ikr
* Ee

ED 0kr (,) (54)

0i
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where

2

= {[ek x (i 3 x eoE)]

[ek x (ek x (e3 x (e3 x ioE)))]}f e d~dn1 (55)

and where

*k'' = ksinO(EcosO + nsinO) (56)

Babinet's principle is applied as in Appendix A.

Again, we desire to know §(0). Analogously with Appendix A, as

e 0, &k 3 and consequently

k2

O r 3 3 oE

- [e3 x (3 x (a3 x (i3 x oZ)))]}fAd~dn (57)
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